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Abstract 
 
Laughter is one of the most important nonverbal sound that human generates. It is a means for 
expressing his emotions. The acoustic and contextual features of this specific sound are 
different from those of speech and many difficulties arise during their modeling process. 
During this work, we propose an audio laughter generation system based on unsupervised 
generative models: the autoencoder (AE) and its variants.  This procedure is the association of 
three main sub-process, (1) the analysis which consist of extracting the log magnitude 
spectrogram from the laughter database, (2) the generative models training, (3) the synthesis 
stage which incorporate the involvement of an intermediate mechanism: the vocoder. To 
improve the synthesis quality, we suggest two hybrid models (LSTM-VAE, GRU-VAE and 
CNN-VAE) that combine the representation learning capacity of variational autoencoder 
(VAE) with the temporal modelling ability of a long short-term memory RNN (LSTM) and 
the CNN ability to learn invariant features. To figure out the performance of our proposed 
audio laughter generation process, objective evaluation (RMSE) and a perceptual audio quality 
test (listening test) were conducted. According to these evaluation metrics, we can show that 
the GRU-VAE outperforms the other VAE models. 
 
 
Keywords: Laughter Synthesis, Variational Autoencoder, Autoencoder, Objective and 
Subjective Evaluation 
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1. Introduction 

The human speech mechanism produces two types of sounds: verbal and nonverbal speech. 
Verbal  speech conveys  a message which contains linguistic information and has a clear 
articulatory description, whilst nonverbal speech, such  as paralinguistic sounds carries 
nonlinguistic messages and occurs in unexpected, variable and natural manner. Nowadays, 
the interaction and communication between human (phone, robot, virtual agent etc) and 
machines became parts of the daily activities. To ensure a better conversation, machines should 
be capable of analyzing, detecting, recognizing and synthesizing the different sounds produced 
by human. Since birth, laughter is the first sound that child generates, it is his way to 
communicate with others before pronoucing his first words [1]. Laughter is an essential feature 
of human communication, it conveyes messages about emotions [2] and may also have 
positive effects on health [3]. Despite the importance of this sound which occurs frequently in 
our daily life, its synthesis is an under-explored domain. The main reasons behind the few 
attempts to synthesize laughter is its diversity. Unlike speech, laughter occurs in many forms 
(snore-like, grunt-like and cackle-like laugh) and in different situations (mockery, happy and 
sometimes in a sad situation). Therefore, it is difficult to gather a sufficient amount of laughter 
data [4]. Also, it has been demonstrated that the acoustic characteristics of laughter signals 
changes according to the contextual information like laughter surrounding with speech or 
laughter occurring simultaneously with speech (speech-laugh) or pure laugh [5]. Another 
problem that encounters the laughter synthesis procedure is the modelization of the acoustic 
features (vocal fold vibration and strong aspiration driven by a sudden burst of the airflow). 

Until nowadays, the technics used for laughter synthesis are those for speech synthesis. So, 
inspired by the works done in speech synthesis based on the Hidden Markov Model (HMM), 
which is considered as a basic model of statistical parametric speech synthesis (SPSS) [6], 
Jerome Urbain [7] and Thomohiro [8] explore this generative model to synthesize laugh. This 
procedure is known as a sequence-to-sequence regression problem determine the relation 
between linguistic and acoustic features. The principal idea of this process is to extract in the 
first place a context-dependent model (linguistic features) which describes the contextual 
structure of laughter like the position of the syllable within the word, the identity of the current 
phone, number of words in the sentence, the number of phones in the syllable, the position of 
the word within the sentence etc...  This context-dependent is then used for the prediction of 
the acoustic features. This model gives information not just about the linguistic features but 
also about the factors and events that can influence and lead to the acoustic features production 
of a phone. Since it is impossible to cover all the context combinations decision trees were 
used [9]. The results obtained in this study are acceptable but far from human-like laugh. This 
is due to the fact that the used corpus includes pure laughter than that in conversational scenes 
and decision trees have some limitations in expressing complicated functions of input features 
such as XOR.  By using the same protocol, the authors in [8] investigates the influence of 
contextual information to synthesize a more realistic laughter sound where a conversational 
speech corpus is used. The naturalness of the synthesized laughter was improved. In [10, 11] 
audio laughter and visual laughter were synthesized independently and joined together to 
provide a 3D avatar with an audio-visual laugh. In [12, 13] speech-laughs were synthesized 
either by changing the vowels of neutral speech with those of laughter or by concatenating 
speech-smile with laughter bursts. For instance, other works have focused on synthesizing 
laughter by making changes to the acoustic features of the signal (fundamental frequency and 
strength of excitation) [14] or by modeling the laughter structure with a mass-spring system 
and synthesized it by the Linear Prediction technic [15]. Results of the later method shows 
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that the synthesized laughter is perceived as unnatural.  
Recently deep learning (DNN) is explored into laughter synthesis. In [16] the authors used 

the Merlin toolkit as a benchmark for the DNN-based laughter synthesis. This methodology 
have improved the quality of the synthesized laughter compared to the HMM model since deep 
neural networks are used as a replacement of decision trees. However, the quality of the 
laughter is still poor. The main reasons behind this failure into synthesizing a human-like laugh 
with DNN is the speaker dependent nature of the used model which needs a large amount of 
data for one speaker that is not available.  In addition, the authors in [17] proposed a synthesis 
approach of conversational laughter with wavenet. The main idea of their suggested procedure 
is to conditionne the wavenet by power contour predicted from the HMM model. So, the results 
of this method depend on the generated power contour, a poor estimated contour leads to the 
degradation of the synthesized laughter.  

As we said previously,  the mojority  of laughter synthesis work  was based on the HMM 
and deep naural network. However, for being able to generate a more realistic laughter with 
these models we need an accurate process to extract the linguistic features without the need of 
an expert. But as we know laughter is a non verbal sounds and there is no specific rules guiding 
to its production. It is produced by a series of sudden bursts of air, released from the lungs, 
keeping the vocal tract almost steady [8]. So, based on this characteristic it is so hard to 
extract the context-dependent model of a signal that did not obey to either any production or 
any contextual rules like speech. In addition, to avoid going through these problems we 
purposed to use another types of generative models that produce audio laughter without 
thinking about the contextual and linguistic features and able to model its acoustique features. 

Lately, deep neural network based on unsupervised learning process such as the 
Autoencoder (AE) and the Variational autoencoder (VAE) shows their effectiveness in data 
resolution. So far, autoencoders were used in many audio applications as an analysis-synthesis 
scheme where the input signals dimension is reduced to a latent vector (encoding), and the 
signal is regenerated from it (decoding). In [18] authors used Denoising AE to reduce noise 
and enhance the quality of synthesized speech. In addition, deep autoencoder is used to extract 
significant features from the spectral envelop which improve the text to speech synthesis 
procedure [19]. In [20] different architectures of the AE were investigated and used to 
ameliorate the music synthesis process. 

On the other side, some researchers used the VAE [21], which is known as a probabilistic 
version of the AE, to synthesize data. In the first place, VAE are designed  for  image processing 
[22]. Newly, variational autoencoder is employed for music and speech production. In [23], 
the authors used the wavenet speech synthesis model as a reference to suggest a Wavenet 
autoencoder based on the conditional autoregressive decoder which learns the temporal codes 
from the raw audio waveform and demonstrated the performance of their proposed benchmark 
by using a large dataset of musical notes the Nsynth dataset. The same dataset is used by the 
authors in [24], where they proposed the use of variational autoencoder as a generative model 
to reproduce audio musical sounds and to evaluate the effectiveness of their models they 
compared it with a linear technique the principal component analysis (PCA). Because of their 
success, VAE is extended   for speech processing . For example, in [25] VAE  is used for 
modeling the magnitude spectrogram (STFT) for speech enhancement. For instance, the 
authors in [26] propose a new sequence to sequence model, an RNN semantic variational 
autoencoder (RNN–SVAE). This model solve the problem of preserving global latent 
information from a long sequence of words. All the results achieved in data synthesis when 
using these two models motivates the reasearch in this paper. This paper is an extension of our 
work presented in [27]. The principle contributions of this studies are: 
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1) We are able of using laughter data from different speakers and even merged between two 
database: the AVLaughterCycle and the Amus database which helped us into collecting sufficient 
data for the training process. This cannot be used with the previous laughter synthesis 
methodology because they are speaker-dependant models. 

2) Most of the laughter synthesis methodology are those used for speech synthesis. These 
methods run into some difficulties during the synthesis of laugh. Among these problems, the 
modelization of contextual and linguistic information related to the production of laughter 
signals and the modelization of its acoustic characteristics (vocal fold vibration, power contour, 
glottal closure instance) since there is no extraction tools dedicated to paralinguistic sounds. 
In this work we are capable of generating and creating laughter from the spectrogram and 
avoid going through the exhausted engineering tools in order to derive an accurate 
representation of this signal. 

3) To more improve the laughter synthesis procedure, we performe an alliance between the 
VAE and the different variety of neural networks (recurrent neural network and convolutional 
neural network).  The obtained results prove that the combination between Gated Recurrent Unit 
and VAE (GRU-VAE) achieve better performance in RMSE (8.6 dB) and the listening test (4). 

The proposed paper is organized as follows: the audio laughter generation process is 
detailed in section 2. Section 3 describes the different generative models (VAE, LSTM-VAE, 
VAE-CNN and AE) used for this purpose. Section 4 shows the experimental set  up starting 
from the database until the implementation of the different architecture. Resuts evaluation and 
discussion are given in section 5. Finally, we conclude this paper in section 6.  

2. Audio Laughter Synthesis Methodology  
The global methodology of laughter synthesis based on  the VAE  and the AE is inspired from 
some works [20, 24, 27]. This analysis-transformation-synthesis procedure is elaborated in 
Fig. 1 and detailed  in the next subsection. To our knwoledge, this is the first time that these 
models were used to process laughter signals. According to this figure the audio laughter 
generation process is a combination of three main stages: the analysis, the training and 
synthesis procedure.    
 

 
Fig. 1.  Audio laughter synthesis procedure 

 
The analysis step: This step is about the process of extracting the acoustic features of laughter 
signals more precisely the log magnitude spectrogram where the Short Time Fourier 
Transform (STFT) is used. 
The training step: This step involves the learning process of the generative models. The main 
objective of the AE and the VAE is to reconstruct the input vector x (the log magnitude 
spectrogram) by learning its representation. This learning process is performed through an 
encoder, which is capable of transforming the input vector into a high-level representation 
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(latent vector) and a decoder responsible of predicting x̂  from this latent vector. More details 
about the structure of the AE and the VAE and their training scheme is presented next. 
The synthesis step: This step concentrates on the laughter waveform generation. In order to 
regenerate it an intervening vocoder is essential. Numerous vocoders have been used for this 
purpose, such as STRAIGHT [28], WORLD [29], DSM [30], etc...  However, each of these 
vocoders requires a specific type of parameters. Taking as an example the STRAIGHT and the 
WORLD vocoder, in order to use them, we need the frequency (F0), the aperiodicities (BAP) 
and the spectral envelop coefficients. In our case, we have only used the log magnitude 
spectrogram and discard the phase information. So, just providing the predicted log magnitude 
spectrogram prevent us from generating the laughter waveform. One of the most famous 
vocoders that can be used during our study is the Griffin-Lim [31] because it is designed to 
estimate the phase information of the signals based on a de-normalization of the estimated log 
magnitude spectrogram and finally reconstruct the time-domain signal. The de-normalization 
is performed by changing the log scale to the linear scale. 
The same topologies are applied to the different architecture of the VAE and the AE. 

3. Description of the Different based-laughter Synthesis Models 
During this section, we details the different generative models (VAE and AE) used in the 
synthesis procedure. Besides, we propose the use of Recurrent Neural Network (precisley the 
Long Short Term Memory cell and the Gated Recurrent Unit) and Convolutional neural 
network along side to the VAE. 

3.1 Auto-encoders (AE) 
The Autoencoder is an unsupervised kind of artificial neural network [19, 20], used to reduce 
the dimension of the input data. This model is an association of an encoder and a decoder (Fig. 
2). 

 
Fig. 2.  The Deep Autoencoder architecture 

 
The encoder is a feed forward neural network designed to compress a high-dimensional low-

level input vector to a low-dimensional high-level latent vector z. The main objective of this 
encoding process is to extract a more relevant information and properties of x . The decoder 
is a symmetric network of the encoder, its aim is to reconstruct an estimate x̂  of the input 
vector data x  from the latent vector z. The autoencoder model is formulated by the following 
equations: 
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( )enc enc encz f W x b= +                                                          (1) 
 

                                                              ˆ ( )dec dec decx f W z b= +  
 

Where 𝑊𝑊𝑒𝑒𝑒𝑒𝑒𝑒 , 𝑊𝑊𝑑𝑑𝑑𝑑𝑑𝑑  are the weight matrix and 𝑏𝑏𝑒𝑒𝑒𝑒𝑒𝑒 , 𝑏𝑏𝑑𝑑𝑑𝑑𝑑𝑑  are the bias vector of the encoder 
and decoder respectively; 𝑓𝑓𝑒𝑒𝑒𝑒𝑒𝑒 is an activation function and x̂  is the predicted vector. 
 During the training process, the weight matrix and the bias vector are learned and updated by 
minimizing a cost function between x  and x̂  . The cost function used in our study is the mean 
squared error (MSE): 
 

2

1

1 ˆ
N

n
n

MSE x x
N =

= −∑                                                      (2) 

 
The shallow autoencoder can be refined by stacking more hidden layers to build a deep 

autoencoder (DAE), as provided in Fig. 2. This makes the AE more powerful and qualified to 
extract more relevant information.  

3.2 The variational autoencoder (VAE)  
Generative models are unsupervised learning technique known by their effectiveness in 
learning the true data distribution of a training set in order to reproduce a new data with some 
variations [32]. Variational autoencoder is one of the most famous generative models and a 
modified version of the classical deterministic autoencoder. The idea behind Variational 
autoencoder resides in generating an observed data x  from a hidden latent variable z , in a 
mathematical point of view this model is illustrated by a probability distribution function (in 
(3)) [21]. 

( , ) ( | ) ( )p x z p x z p zθ θ θ=                                                        (3) 
 

where 𝑝𝑝𝜃𝜃(𝑧𝑧) is the prior distribution of the latent variable 𝑧𝑧, 𝑝𝑝𝜃𝜃(𝑥𝑥|𝑧𝑧) is the likelihood of the 
observation 𝑥𝑥 and θ denotes the set of distribution parameters. To make this model solvable a 
posterior distribution 𝑝𝑝𝜃𝜃(𝑥𝑥|𝑧𝑧) should be computed in order to infer the characteristics of the 
latent variable z. This can be presented by [32]: 
 

( | ) ( )( | )
( )

p x z p zp z x
p x

θ θ
θ

θ

=                                                   (4) 

 
According to this equation the denominator 𝑝𝑝𝜃𝜃(𝑥𝑥) is called the evidence and is calculated 

by marginalizing out the latent variables from the joint distribution 𝑝𝑝𝜃𝜃(𝑥𝑥, 𝑧𝑧). 
 

( ) ( ) ( | )p x p z p x z dzθ θ θ= ∫                                                   (5) 
 

To make  (5)  computed,  variational  inference is proposed and its aim is to approximate 
the posterior distribution 𝑝𝑝𝜃𝜃(𝑧𝑧|𝑥𝑥) to a tractable distribution 𝑞𝑞𝜑𝜑(𝑧𝑧|𝑥𝑥) [32, 33]. In other words, 
to make a best approximation between the real posterior distribution and their correspondence 
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one,  a minimization of the Kullback-Leibler Divergence is performed. Note that the Kullback-
Leibler divergence (KLD) is   a means to measure the similarities between two probability 
distributions. And, in general, 𝑞𝑞𝜑𝜑(𝑧𝑧|𝑥𝑥)can be a gaussian or a Bernoulli distribution. The 
minimization of the KLD leads to the following equation [33]: 

 
log ( ) ( , , ) ( ( | ) || ( | ))p x L x KLD q z x p z xθ ϕ θϕ θ= +                   (6) 

 

The term 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝜃𝜃(𝑥𝑥) known as log evidence and is constant, the KLD divergence between 
𝑞𝑞𝜑𝜑(𝑧𝑧|𝑥𝑥) and 𝑝𝑝𝜃𝜃(𝑧𝑧|𝑥𝑥) is non- negative and equivalent to zero only and only if 𝑞𝑞𝜑𝜑(𝑧𝑧|𝑥𝑥) is equal 
to the true posterior distribution, the last term 𝐿𝐿(𝜑𝜑,𝜃𝜃, 𝑥𝑥) is called the variational lower bound 
and is a lower bound on the log-likelihood of the data which means that  𝐿𝐿(𝜑𝜑,𝜃𝜃, 𝑥𝑥) <
𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝜃𝜃(𝑥𝑥). The ( , , )L xϕ θ  is given by:  
 

( | )( , , ) ( ( | ) || ( )) [log ( | )]q z xL x KLD q z x p z E p x z
ϕϕ θ θϕ θ β= − +                   (7) 

 
Hence, in practice minimizing KLD divergence is equivalent to maximizing the variational 

lower bound 𝐿𝐿(𝜑𝜑, 𝜃𝜃, 𝑥𝑥). This term is defined as the association of a regularization and a 
reconstruction accuracy terms [21, 33]. Where the regularization term define the 
approximation between the posterior and prior distributions. Regarding the reconstruction 
term, the cross-entropy error or the mean squared error can be used. As we are dealing with 
the problem of audio generation where the input vector x is nothing more then a set of real 
valued spectral magnitude and the loss error is the difference between the predicted output and 
the real input it is appropriate to use the mean squared error instead of the cross-entropy. To 
make the balance between these two terms, a β value is defined and it should be chosen 
carefully [34]. According to what is described previously VAE uses neural networks to 
illustrate the variational inference model (encoder) and the generative model (decoder). 

 

 
Fig. 3.  The Variational autoencoder architecture 

 

The Fig. 3 gives an outline of the whole procedure.The input data vector x is entering to 
the encoder neural network which is defined as an approximation of the posterior distribution 
𝑞𝑞𝜑𝜑(𝑧𝑧|𝑥𝑥) and outputs a mean vector 𝜇𝜇(𝑥𝑥) and the covariance 𝜎𝜎2(𝑥𝑥) which is a diagonal matrix 
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used to sample the latent vector z. So 𝑞𝑞𝜑𝜑(𝑧𝑧|𝑥𝑥) is usually a gaussian distribution: 
2( | ) ( | ( , ), ( , ))q z x N z x xϕ µ ϕ σ ϕ=                                        (8) 

To regularize the structure of the latent space a prior distribution is used. This 
regularization is performed by the Kullback-Liebler divergence between 𝑞𝑞𝜑𝜑(𝑧𝑧|𝑥𝑥) and 𝑝𝑝𝜃𝜃(𝑧𝑧). 
In general the standard 𝑝𝑝𝜃𝜃(𝑧𝑧) is a normal distribution N(0, 1), according to that the KLD 
divergence is given by (9):  

2 2 21( ( | ) || (0,1)) (1 log( ) )
2

KLD q z x Nϕ σ µ σ= + − −                         (9) 

Thus sampling z by just following σ and µ prevent the update of the network parameter 
sets by backpropagation, to solve this problem a reparameterization trick is suggested [33, 35] 
and consist of sampling  z from ~ (0,1)Nε  as presented below: 

z µ σ ε= + ⊗                                                           (10) 

where ⊗  denote an element-wise multiplication. 
The decoder 𝑝𝑝𝜃𝜃(𝑥𝑥|𝑧𝑧) uses  z as an input to estimate the mean and the variance and generates 
the output x .  𝑝𝑝𝜃𝜃(𝑥𝑥|𝑧𝑧) is a gaussian distribution: 
 

2( | ) ( | ( , ), ( , ))p x z N z z zθ µ θ σ θ=                                             (11) 

 
ϕ and θ are respectively the parameter set of the encoder and decoder network (the weights 
and bias).  

3.3 LSTM-VAE 
During training, deep variational autoencoder architecture (with Sigmoid, Hyperbolic tangent, 
Linear and Relu activation function) ignore the sequential nature of laughter. So, the better 
choice to include this special feature for audio signals is the use of the Recurrent Neural 
Network (RNN) [36]. RNN are known by their capacities in memorizing information learnt 
from prior inputs when generating outputs. According to this characteristic, the RNN output 
depends on the output of the previous layer and the internal hidden states (hidden neurons). 
This makes them convenient for modeling the time series data with their temporal 
dependencies. During our study, we used the Long Short Term Memory cell (LSTM) [9] which 
is one of the various RNN architecture, created to solve the vanishing gradient problem and to 
take into consideration the long term dependencies of the data. The LSTM-VAE model is 
presented by Fig. 4. This figure shows that the LSTM-VAE model is also a combination of an 
encoder and a decoder [37-39], where the encoder network is a stacked of two LSTM layers 
dedicated to approximate the posterior 𝑝𝑝𝜃𝜃(𝑧𝑧𝑡𝑡|𝑥𝑥𝑡𝑡) and extract the latent vector z  by feeding 
their output into a linear model in order to estimate the mean (𝜇𝜇(𝑥𝑥𝑡𝑡))and the variance (𝜎𝜎(𝑥𝑥𝑡𝑡)) 
parameters. The decoder network includes the same number of LSTM layers and units as the 
encoder network. Its aim is the reconstruction of the input log spectrogram from the sampled 
latent vector z. Besides to the LSTM layers, a merging between the VAE and the Gated 
Recurrent Units (GRU) is performed. The GRU-VAE structure shows prominence results 
compared to the LSTM-VAE. Thus, the major benefits behind using the RNN-VAE [26] is that 
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the compressed information of the input log magnitude spectrogram is learned as a region of the 
latent space rather than a single point. 

 
  Fig. 4.  The LSTM-VAE architecture 

3.4 CNN-VAE 
Convolutional neural network (CNN) is known as a powerful tool for image generation and 
recognition [40]. In this section, we will join the CNN and VAE together for laughter audio 
generation procedure. For this purpose a 128*128 mel log spectrogram is extracted from 5 s 
audio length. The CNN- VAE architecture is given by  Fig. 5. 

 

 
Fig. 5.  The CNN-VAE architecture 

 
The encoder is composed of a convolutional and max- pooling layers, however the 

decoder is an association of deconvolutional and upsampling layers. Below we give an 
overview of the encoder and decoder networks. 

• The  encoder:   {input:[128*128*1] → Conv2D: [128*128*32]  → 
MaxPooling2D:  [64*64*32]    →  Conv2D: [64*64*1] → MaxPooling2D: 
[32*32*1] → FC-1024} 

• The decoder: {input z:1024 → Reshape: [32*32*1]→ Conv2DTranspose:  
 

    [32*32*32] → UpSampling2D: [64*64*32] → Conv2DTranspose: [64*64*1]→  
 
    UpSampling2D: [128*128*1]} 
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4. Experiments 

4.1 Database 
During this study we used two differents laughter databases: the AVLaughterCycle and the 
Amus database. 

The AVLaughterCycle database is an audio-visual laughter database that incorporates both 
the audio signals and facial motion tracking. Twenty four subjects, 6 females and 15 males, 
paticipate in the recording process. To elicite spontaneous laugh, participants were structured 
to watch hilarious video, the experiment is held in an isolated room in order to collect a clear 
laughter sound. In total, The corpus comprise about 1024 laughter samples. This database 
contains various laughter sounds some of them are voiced (song-like laughter) others are 
unvoiced (snort-like and grunt-like laughter). In addition, the phonetic labels of these laughter 
sounds are clustered under 7 groups : vowels, consonants, fricatives, nareal fricatives, plosive, 
cackles and hum-like. The Amus database is recorded to study the effect of amusement in 
speech. This database is around 3 hours of data collected from one female and two males. The 
corpora includes diverse kind of data such as: speech-smile, speech-laugh, neutral speech and 
148 laugh samples. In order to gather this collection, the subjects were asked to read sentences 
with different styles in english and french. During this work only the laughter audio signals 
were kept. All the audio sounds were sampled at 16 kHz. More details about the recording and 
the transcription procedure of these two databases can be found in [5, 41]. 

To train our model a total of 1100 laughter sounds are used, we split it into a training set of 
80% and a test set of 20%. The remaining 100 laughter sounds are used for the evaluation task. 

4.2 Data pre-processing and Experimental setup  
For the data processing task, we first remove the silence frame from the laughter audio signals. 
For the magnitude spectrogram extraction, the Short Time Fourier Transform (STFT) with 
1024-point is carried out to the input signal using the hamming window with 25 ms length and 
10 ms of overlap. The extracted 513 points positive frequency magnitude spectrogram were 
transformed to the log scale and normalized between -1 and 1 which makes them useful by the 
neural network of the VAE and the AE. At the synthesis stage, before the reconstruction of the 
time-domain waveform from the decoded log magnitude spectrogram with the Griffin-Lim 
vocoder a denormalization from log to linear scale is applied.     

As we said previously, either  for  the  standard  VAE  or  the LSTM-VAE, GRU-VAE and 
CNN-VAE, these models are composed of an encoder aiming at approximate the posterior  
𝑝𝑝𝜃𝜃(𝑧𝑧|𝑥𝑥) to a known distribution ( | ) ~ ( ( ), ( ), )q z x N x xϕ µ σ ϕ  and sampled a latent vector z 
from this distribution. A reparameterization trick is performed on z (in (11)). For this trick we 
perform two differents choices: 

• ε  is sampled from the gaussian distribution  (0,1)N . 
• ε  is sampled from an isotropic gaussian distribution  𝑁𝑁(0,𝜎𝜎𝜀𝜀 ∗ 𝐼𝐼), where we treat the 

value of  𝜎𝜎𝜀𝜀 as an hyperparameter. 
Besides to ε , we noticed during our experiments that the choice of the β parameter in (8) 

can affect the results. In  the next section we will discuss how the variation of these two 
parameters (ε and 𝜎𝜎𝜀𝜀) have an impact on laughter synthesis procedure. 
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For all the models, the encoder and decoder are trained on the extracted log magnitude 
spectrogram to minimize a cost function (MSE for the AE and variational lower bound for the 
VAE) between the real log magnitude spectrogram and the decoded one.  Several encoding 
dimensions from 4 to 100  and  various pairs of activation functions were  used  for  the hidden 
and  output  layers  (Tanh, Sigmoid),  (Tanh, Linear)  and  (Relu, Sigmoid).  The  architecture  
used  for  VAE  is [513, 256, 128, encod, 128, 256, 513]. Where the encod  parameter  is  the  
latent  vector  dimension and 513, 256, 128 are the neurones number in each layer. In addition, 
We  investigated diverse architecture of the autoencoder, starting  with a shallow  AE   to   a   
deeper   one   and   they   are   respectively: [513, encod, 513], [513, 256, encod, 256, 513] and 
[513, 256, 128, encod, 128, 256, 513]. The same activation functions were used. Concerning the 
LSTM-VAE and GRU-VAE models, we choose the following structure [513, 256, 128, encod, 
128, 256, 513] where the encoder and the decoder  are composed of three LSTM (GRU) layers 
with linear activation function.    

The keras deep learning toolkit is used to implement the VAE and AE, the training is 
performed by the adam optimizer [42] with a learning rate of 10−3 over 300 epochs with 
early stopping criterion, a batch size of 32 and the MSE is used as the reconstruction accuracy 
in (8). The AE is trained in an end-to-end method. The scikit-learn toolkit was used to 
implement the PCA. 

5. Evaluation and Discussion   
To asses the effectiveness of our audio laughter synthesis process based on the VAE and the 
AE, objective and subjective evaluation metrics were proposed. 

 

5.1 Objective evaluation 
For the objective evaluation metrics we used the RMSE (in decibel dB) to compute the 
prediction error between the real log magnitude spectrogram and the decoded one performed  
on the evaluation set. 
Variational autoencoder case: During this section, we discuss the objective results for 
laughter audio generation process based on the different architecture of the VAE model (VAE, 
LSTM-VAE and CNN-VAE). 

For simplicity, we only Consider the case of the (Tanh, Linear) configuration with 
encod = 100. The Fig. 6 indicates the evolution of the RMSE when varying the values of β 
and 𝜎𝜎𝜀𝜀. As you can see, a high value of β and 𝜎𝜎𝜀𝜀 leads to bad results. However, by reducing 
the 𝜎𝜎𝜀𝜀the performance of the model can be improved even when β has a higher values. 
Therefore, if we take a high value of β we need to reduce the value of 𝜎𝜎𝜀𝜀 and vice versa. 
As a conclusion, we realized that the reconstruction of the log magnitude spectrogram is 
sensitive to the β and 𝜎𝜎𝜀𝜀 parameters, where choosing a high or a low value of β can affect 
the audio generation procedure in a negative way. So, it is important to make the best choice 
between these two parameters in order to be able to get a better results. 
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Fig. 6.  The RMSE for different values of β and 𝜎𝜎𝜀𝜀 

 
For the rest of our experiments, we choose to set 𝛽𝛽 = 1 ∗ 10−6 and  ~ (0, )N Iε . 

The Fig. 7 and Fig. 8 shows the evolution of the RMSE of a male and a female laughter audio 
generation as a function of the latent vector dimension (encod). As expected, the RMSE 
decreases according to the latent vector dimension for all architectures. For  the  standard VAE 
model, the (Tanh, Linear) configuration gives better results  compared  to  the  (Relu, Sigmoid)  
and (Tanh, Sigmoid) configurations where the RMSE decreases from 20 dB for encod = 4 
to 7dB for encod = 100. The GRU-VAE outperforms the LSTM-VAE model and the 
standard VAE and even the CNN-VAE, which proves the importance in taking advantage 
of the sequential nature of the data for the audio laughter generation procedure. 

 

 
Fig. 7.  The RMSE for the VAE as a function of the latent vector dimension  

for a female laughter audio generation 
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Fig. 8.  The RMSE for the VAE as a function of the latent vector dimension for a male laughter audio 

generation 

Autoencoder and PCA case: The next figures (Fig. 9, Fig. 10 and Fig. 11) indicate the 
RMSE (dB) values obtained for each configuration of the auto-encoder model. 

• The Fig. 9 represents the RMSE of the deep autoencoder model with   the   configuration 
[513,256,128, encod,128,256,513] for the various pairs of activation functions and those 
of the PCA. According to this figure the DAE outperforms the PCA when employing the 
(Tanh, Linear) as activation function. In addition, The PCA gives better RMSE values, 
about 7.01 for 100-dimensional latent vector, compared to the DAE (15.63) when using 
the pair (Tanh, Sigmoid). 
 

 
Fig. 9.  The RMSE evolution  of the DAE architecture ( [513,256,128, ,128,256,513]encod )  

and the PCA. 

• The Fig. 10 shows the reconstruction error (RMSE) of the autoencoder with the 
configuration [513,256, encod,256,513]. As we can see, for this configuration the AE 
model provides better results than the PCA especially when employing as activation 
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function either (Tanh, Linear) or (Relu, Sigmoid). 
 

 
Fig. 10.  RMSE measures of the autoencoder architecture ( [513,256, , 256,513]encod ) and the PCA 

• The Fig. 11 shows that PCA outperforms the AE model only in case of employing as 
activation functions the pairs (Tanh, Sigmoid) and (Relu, Sigmoid) where the RMSE 
decreases from 53.01 to 7.01. 
 

 
Fig. 11.  RMSE evolution for the SAE architecture  ( [513, ,513]encod ) and the PCA 

In addition, it can be noticed that the PCA outperforms the three architectures of the 
AE model when the encoding dimension is high (encod = 100). Besides, the DAE model 
gives better results (lower RMSE) compared to the shallow AE (SAE) which proves the 
benefits of using deep architecture to extract high level features and that the RMSE 
decreases depending on the size of the latent vector for all models. 

DAE vs VAE vs PCA: The Fig. 12 shows the RMSE evolution for the PCA, DAE and the 
VAE  models. For clarity, we only consider the case of using as activation functions the pairs 
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(Tanh, Linear). As we can see, The VAE outperforms the PCA and the DAE. For a low-
dimensional latent vector (encod = 4, encod = 10, encod = 20) the DAE and the VAE can 
extract more relevant information from data compared to the PCA. 
 

 
Fig. 12.  RMSE evolution of the PCA, VAE and DAE architectures 

The Fig. 13 represents the log magnitude spectrogram of an original male laughter sound 
and those reconstructed from the differents architectures that we have discussed earlier. We 
can notice that the CNN-VAE model fails in reconstructing  the log magnitude spectrogram, 
we can’t differentiate between the harmonics which leads to the degradation of the laughter 
synthesized quality and the sound becomes unclear. However,  the GRU-VAE model can be 
considered as the best model that succeeded in reconstructing very well the harmonics even 
the information that yield between them, compared to the other models. 
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Fig. 13.  Examples of original and reconstructed log magnitude spectrograms of a laughter male 

sound obtained from the CNN-VAE, GRU-VAE, LSTM-VAE and the standard VAE models 
 

The RMSE (dB) overviews information about the acoustic features distortion. To figure 
out the audio perception quality, a listening test is suggested.  

5.2 Subjective evaluation 
The subjective evaluation is known by a listening test, consist of evaluating the quality of the 
synthesized laughter by given a score from 1 to 5 where 1 means very poor, 2 poor, 3 average, 
4 good and 5 excellent. This test is carried out with the help of 10 subjects, five of them are a 
PhD students related to the field of signal processing. The participants aged between 24 and 
32 years. Before starting the test, participants were structured to wear a headphones. For each 
architecture and for each gender, 10 samples of synthesized laughs were used for this evaluation 
task. In the end of this test, we collect a 100 scores for each configuration and we consider the 
mean score for the evaluation. This test is effectuated for all the models described in this paper. 
Just like in the previous section we’ll analyse the results of the listening test for each model in 
a separate way. 
 
VAE: Table 1 gives an overview of the listening test results for the different architecture 
of the VAE model. For this test we examine the laughter synthesized with the two-
dimensional latent vector encod = 100 and encod = 4. We also synthesized a male and a 
female laughter sound. 
 

Table 1.  Subjective results for different architectures of the VAE  

 
encod = 100 encod = 4 

Male Female Male Female 

Tanh-Sigmoid 1.83 2.16 1 1.16 

Relu-Sigmoid 3.16 3.33 1.33 1.66 

Tanh-Linear 3.16 3.33 1.5 1.33 

LSTM-VAE 2.16 2 1.83 1.33 

GRU-VAE 3.33 4 1.83 1.83 
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As stated by Table 1 (encod = 100), the GRU-VAE model outperforms the other 
architecture, whereas, the VAE possesses the same score for the pairs of activation function 
(Tanh, Linear) and (Relu, Sigmoid). These results are in accordance with the objective 
results. Concerning the CNN-VAE model, it gives inadequate results compared to the other 
models, where the score is equal to 1  for the female laughter sound and is equal to 1.2 for the 
male laughter sound. 

DAE and PCA: Table 2 represents the mean opinion score ratings of the autoencoder 
and the PCA model for the 2 latent vector dimension encod =100 and encod = 4. As stated 
by this table the DAE gives a better score, (4.16) in case of using (Tanh, Sigmoid) as 
activation function, compared to the PCA (3). The perception quality of the synthesized 
laughter decreases with the dimension of the latent vector. 
 
 

Table 2.  Subjective results for different architectures of the DAE and the PCA 

 Rate 
encod=100 encod=4 

Tanh-Sigmoid 4.16 2.16 
Relu-Sigmoid 4 2.33 
Tanh-Linear 4 2.16 

PCA 3 2.16 

6. Conclusion 

During this study, we have investigated the audio laughter generation process based on 
unsupervised generative models: Variational autoencoder and the autoencoder. These two 
models are considered as a dimensionality reduction technique, responsible of 
transforming the input data vector x from a low-level to a high-level representation 
(latent vector). The latent vector is employed by a decoder network to reconstruct the 
input vector x̂. For this purpose, different configuration were examined and various 
combination between the VAE and other neural networks were performed such as: LSTM-
VAE, GRU- VAE and CNN-VAE. According to our experiments, we can conclude that: 1) 
The DAE outperform the shallow AE and the PCA, 2) The GRU-VAE have successfully 
reconstructed the log magnitude spectrogram compared to the VAE, LSTM-VAE and CNN-
VA, which leads to a better laughter audio quality perception, 3) The VAE gives better 
results than the DAE and the PCA especially for a low-dimensional latent vector (encod 
= 4). 
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